Smyd1b is required for skeletal and cardiac muscle function in zebrafish

نویسندگان

  • Huiqing Li
  • Yongwang Zhong
  • Zengfeng Wang
  • Jie Gao
  • Jin Xu
  • Wuying Chu
  • Jianshe Zhang
  • Shenyun Fang
  • Shao Jun Du
چکیده

Smyd1b is a member of the Smyd family that is specifically expressed in skeletal and cardiac muscles. Smyd1b plays a key role in thick filament assembly during myofibrillogenesis in skeletal muscles of zebrafish embryos. To better characterize Smyd1b function and its mechanism of action in myofibrillogenesis, we analyzed the effects of smyd1b knockdown on myofibrillogenesis in skeletal and cardiac muscles of zebrafish embryos. The results show that knockdown of smyd1b causes significant disruption of myofibril organization in both skeletal and cardiac muscles of zebrafish embryos. Microarray and quantitative reverse transcription-PCR analyses show that knockdown of smyd1b up-regulates heat shock protein 90 (hsp90) and unc45b gene expression. Biochemical analysis reveals that Smyd1b can be coimmunoprecipitated with heat shock protein 90 α-1 and Unc45b, two myosin chaperones expressed in muscle cells. Consistent with its potential function in myosin folding and assembly, knockdown of smyd1b significantly reduces myosin protein accumulation without affecting mRNA expression. This likely results from increased myosin degradation involving unc45b overexpression. Together these data support the idea that Smyd1b may work together with myosin chaperones to control myosin folding, degradation, and assembly into sarcomeres during myofibrillogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and Functional Characterization of Smyd1a in Myofibril Organization of Skeletal Muscles

BACKGROUND Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac m...

متن کامل

SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos.

Histone modification has emerged as a fundamental mechanism for control of gene expression and cell differentiation. Recent studies suggest that SmyD1, a novo SET domain-containing protein, may play a critical role in cardiac muscle differentiation. However, its role in skeletal muscle development and its mechanism of actions remains elusive. Here we report that SmyD1a and SmyD1b, generated by ...

متن کامل

Smyd1b_tv1, a Key Regulator of Sarcomere Assembly, Is Localized on the M-Line of Skeletal Muscle Fibers

BACKGROUND Smyd1b is a member of the Smyd family that plays a key role in sarcomere assembly during myofibrillogenesis. Smyd1b encodes two alternatively spliced isoforms, smyd1b_tv1 and smyd1b_tv2, that are expressed in skeletal and cardiac muscles and play a vital role in myofibrillogenesis in skeletal muscles of zebrafish embryos. METHODOLOGY/PRINCIPAL FINDINGS To better understand Smyd1b f...

متن کامل

A compact unc45b‐promoter drives muscle‐specific expression in zebrafish and mouse

Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off-target effects the therapeutic gene should be driven by a tissue-specific promoter in order to ens...

متن کامل

Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly

The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013